Insektivoren

ww.blackjungleterrariumsupply.com/Carnivorous-Plants_c_17.html

https://web.de/magazine/wissen/natur-umwelt/harmlos-aussehen-fleischfressende-pflanzen-37046048

 

Vergleich: Siehe: Animalia + Gallen allgemein + Eulipotyphla (Insektenfresser)

 

Energetics and the evolution of carnivorous plants - Darwin's ‘most wonderful plants in the world’

(C. Darwin, Insectivorous plants, p. 231)

Pflanzen:

Aldrovandra vesiculosa.

Antharus arche. o. Continarius arche = Tintenfischpilz

Aroidae. = Arums/ziehen durch Geruch Insekten an zur Bestäubung

Cephalotus follicularis = Zwergkrug./= fleischfressende Pflanze Oxydales.

Dionea. muscipula = Venus-fliegenfalle

Dipsacus. sylvestris o. fullonum, bildet eine Rosette worin sich Wasser sammelt und Insekten gefangen werden.

Dros.

Nep.

Nid.

Ping-vg. = Dros-ähnlich

Plect. = Kannengewächs/= Buntnessel/= Harfennessel/= Mottenkönig

Roridula dentata. lebt in Symbiose mit Insekten/= Wanzepflanze

Sarr. (Ericales. enthält Coniinum.)

Lentibularia o. Utricularia vulgaris Utricularia leben auf Wasseroberfläche Lamiales. Sukkulenten. Mondzeitaltergruppe.

Utricularia foliosa.

Amphibia

Bufo. = Kröte

Bufo-s.

Salam.

Mammalia

Myotis.

 

Vergleich:

Wikipedia:

Five basic trapping mechanisms are found in carnivorous plants.

    Pitfall traps (pitcher plants) trap prey in a rolled leaf that contains a pool of digestive enzymes or bacteria.

    Flypaper traps use a sticky mucilage.

    Snap traps utilize rapid leaf movements.

    Bladder traps suck in prey with a bladder that generates an internal vacuum.

    Lobster traps, also known as eel traps, force prey to move towards a digestive organ with inward-pointing hairs.

These traps may be active or passive, depending on whether movement aids the capture of prey. For example, Triphyophyllum is a passive flypaper

that secretes mucilage, but whose leaves do not grow or move in response to prey capture. Meanwhile, sundews are active flypaper traps whose leaves

undergo rapid acid growth, which is an expansion of individual cells as opposed to cell division. The rapid acid growth allows the sundew tentacles to

bend, aiding in the retention and digestion of prey.

[Nicolas Rost, 12 Jahre (2005)]

Blühende Schönheiten o. gefährliche Monster? (karnivore Pflanzen)

„Gesellschaft für fleischfressende Pflanzen“ http://forum.carnivoren.org/

Lebensweise

Karnivoren brauchen Wasser/Licht/Wärme. Bilden meistens schöne Blüten zur Vermehrung. Leben alle an Standorten, die in „irgendwelcher Form extrem

sind und die ausreichende Versorgung mit den notwendigen Nährstoffen nicht immer auf herkömmlichem Wege gewährleisten“.

Warum tierische Nahrung? Wachsen auf nährstoffarmen Böden und darum haben sie sich tierische Nahrungsquellen erschlossen/Tiere enthalten die meisten

von Pflanzen benötigten Nährstoffe (K/N/Na/Ca/P/Mg/Fe) in großen Mengen.

Unterschieden nach Familien (Droseraceae/Sarraceniaceae/Nepenthaceae) o. Fallentypen (Klebefallen/Klappfallen/Grubenfallen/Saugfallen).

Klebefallen:

Droseraceae

Dros: fängt mithilfe von kleinen Klebetropfen an weißen oder roten Härchen am Rande ihrer Blätter sitzend. Beutetier stirbt durch Ersticken.

Pinguicula: Insekten kleben an Oberseite Blätter = sehr fettig und klebrig. Klebfalle = aktiv.  Blattränder biegen sich nach oben, decken somit die Beute

ab und formen eine geschlossene Verdauungskammer“.

Klappfallen:

Dionaea (Venusfliegenfalle): Am Ende der Blätter befinden sich zwei Fanglappen mit Randzähnen an den Blatträndern. Sobald ein Tier die Tasthärchen

an der Innenseite der Fanglappen berührt, klappen die Fanglappen zusammen und das Insekt ist gefangen. Zurück bleibt der Chitinpanzer des ehemals

lebendigen Opfers.

(C. Darwin, Insectivorous plants, p. 231)

    ‘This plant, commonly called Venus’ fly-trap, from the rapidity and force of its movements, is one of the most wonderful in the world.’

Grubenfallen:

Sarr. (Schlauchpflanze/= Trompetenblatt): Lockt Insekten durch Nektarduft und die oft farbige Öffnung der Schlauchblätter an/am oberen Lappen o.

Deckel sind viele nach unten gerichtete kleine Härchen, die zusammen mit dem Fangschleim an der Schlauchinnenwand die Insekten festhalten. (Ericales.)

[Nicolas Rost, 12 Jahre (2005)]

Nep. (Kannenpflanze): An den Blattenden bildet diese Pflanze Kannen aus. „Die Flüssigkeit in der Kanne ist oberflächenaktiv (= seifenähnlich)“.

Chitinpanzer wird vollständig verdaut.

Saugfallen

Utricularia (Wasserschlauch): Besitzt winzig kleine Fangblasen in der Erde oder unter Wasser. „Fallen mit Wasser gefüllt und erzeugen in ihrem Inneren einen

Unterdruck. Wird die Falle von einem kleinen Tier an den Borsten des Auslösemechanismus berührt, so saugt sie Wasser in das Falleninnere und das Beutetier

wird in die Falle hineingespült“.

Quelle: www.falle.de

Karnivore Pflanzen meiden mineralische Böden/Leben auf Moor/andere Pflanzen/Pilzen

 

https://www.ncbi.nlm.nih.gov/pubmed/19213724

[Aaron M. Ellison and Nicholas J. Gotelli]

Carnivory has evolved independently at least 6x in five angiosperm orders. In spite of these independent origins, there is a remarkable morphological convergence of carnivorous plant traps and physiological convergence of mechanisms for digesting and assimilating prey. These convergent traits have made carnivorous plants model systems for addressing questions in plant molecular genetics, physiology, and evolutionary ecology. New data show that carnivorous plant genera with morphologically complex traps have higher relative rates of gene substitutions than do those with simple sticky traps. This observation suggests two alternative mechanisms for the evolution and diversification of carnivorous plant lineages. The ‘energetics hypothesis’ posits rapid morphological evolution resulting from a few changes in regulatory genes responsible for meeting the high energetic demands of active traps. The ‘predictable prey capture hypothesis’ further posits that complex traps yield more predictable and frequent prey captures. To evaluate these hypotheses, available data on the tempo and mode of carnivorous plant evolution were reviewed; patterns of prey capture by carnivorous plants were analysed; and the energetic costs and benefits of botanical carnivory were re-evaluated. Collectively, the data are more supportive of the energetics hypothesis than the predictable prey capture hypothesis. The energetics hypothesis is consistent with a phenomenological cost-benefit model for the evolution of botanical carnivory, and also accounts for data suggesting that carnivorous plants have leaf construction costs and scaling relationships among leaf traits that are substantially different from those of non-carnivorous plants.

https://www.ncbi.nlm.nih.gov/pubmed/15248131

[K. Müller/T. Borsch/L. Legendre/S. Porembski/I. Theisen/W Barthlott]

Evolution of carnivory in Lentibulariaceae and the Lamiales.

As a basis for analysing the evolution of the carnivorous syndrome in Lentibulariaceae (Lamiales), phylogenetic reconstructions were conducted based on coding and non-coding chloroplast DNA (matK gene and flanking trnK intron sequences, totalling about 2.4 kb). A dense taxon sampling including all other major lineages of Lamiales

was needed since the closest relatives of Lentibulariaceae and the position of "proto-carnivores" were unknown. Tree inference using maximum parsimony, maximum likelihood, and Bayesian approaches resulted in fully congruent topologies within Lentibulariaceae, whereas relationships among the different lineages of Lamiales were only congruent between likelihood and Bayesian optimizations. Lentibulariaceae and their three genera (Pinguicula, Genlisea, and Utricularia) are monophyletic, with Pinguicula being sister to a Genlisea-Utricularia clade. Likelihood and Bayesian trees converge on Bignoniaceae as sister to Lentibulariaceae, albeit lacking good support. The "proto-carnivores" (Byblidaceae, Martyniaceae) are found in different positions among other Lamiales but not as sister to the carnivorous Lentibulariaceae, which is also supported

by Khishino-Hasegawa tests. This implies that carnivory and its preliminary stages ("proto-carnivores") independently evolved more than once among Lamiales. Ancestral states of structural characters connected to the carnivorous syndrome are reconstructed using the molecular tree, and a hypothesis on the evolutionary pathway of the carnivorous syndrome in Lentibulariaceae is presented. Extreme DNA mutational rates found in Utricularia and Genlisea are shown to correspond to their unusual nutritional specialization, thereby hinting at a marked degree of carnivory in these two genera.

 

 

Vorwort/Suchen                                Zeichen/Abkürzungen                                    Impressum